Answer:50 miles per hour 50/1hr
Explanation:100 divided by 2 is 50, divide 2 by 2 thats 1
Answer:
the required minimum magnitude of the force F is 21 N
Explanation:
Given the data in the question,
m = 5 kg
width = 60 cm
height = 80 cm
Let force is F represent in the image below,
so when the block about to rotate normal shifted to edge of cube
mg(w/2) = Fh
F = mg(w/2) / h
we know that g = 9.8 m/s²
we substitute
F = (5 × 9.8 ( 60/2)) / 70
F = (5 × 9.8 × 30 ) / 70
F = 1470 / 70
F = 21 N
Therefore, the required minimum magnitude of the force F is 21 N
Answer:
750 J
Explanation:
We have a student that pushes a 50N block across the floor for a distance of 15m. The question is asking how much work was done to move the block.
To solve this, we must know that we are looking for a certain thing called joules. And to get the answer, we must follow the formula of W = FS
F being the force and S being the distance.
W = FS
W = (50)(15)
W = 750
Therefore, 750 joules is our answer.
Answer:
525 kg.m/s
Explanation:
★ Momentum = Mass× Velocity
→ P = (7.5 × 70) kg.m/s
→ P = (75 × 7) kg.m/s
→ <u>P</u><u> </u><u>=</u><u> </u><u>5</u><u>2</u><u>5</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>
Answer:
a) Em= K +U, b) Em= K
Explanation:
The system in this case is formed by the mobilizes and the hill.
Let's write the expressions correctly and completely.
a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.
Em = K + U
be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car
Em = K
c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.