If 1 ken is 1.97 meter, then 1 square ken is 3.8809 square meters, and one cubic ken is 7.645373. As for the cylindrical tank, the volume of it would be 10.835 times the radius of the cylinder time 1.97^2 times pi. As you didn't specify the radius, I can't give the exact answer but that would be how to get it.
Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 
The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
Answer:
Explanation:
Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.
Then acceleration = change in velocity/Time.

Acceleration = (9-0)/3=9/3=3 m/s².
So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².
As the plane falls the parabolic path remains directly below as the plane continues to fly over. This give more of an overview. When the package falls vertical acceleration happens as there is a vertical velocity as the package falls form high above. The downwards motion of gravity acts on the package if the approximated projectile motion ignoring air resistance.