Answer:
Water would not be able to transport nutrients -‐-‐ in plants, or in our bodies -‐-‐ nor to dissolve and transport waste products out of our bodies. ... Cohesiveness, adhesiveness, and surface tension: would decrease because without the +/-‐ polarity, water would not form hydrogen bonds between H20 molecules.
Input the atomic masses of Mg and P to give 134.84g/mol
Explanation:
The molar mass of a substance (atom or molecule or compound) is the mass in grams of one mole of the substance:
When dealing with an element the molar mass is the relative atomic mass expressed as g/mol.
For compounds, you add the atomic masses of the component atoms and you sum up.
You simply input the atomic mass of 3 atoms of Mg and 2 atoms of P
Atomic mass of Mg = 24.3g/mol
P = 30.97g/mole
Molar mass of Mg₃P₂ = 3(24.3) + 2(30.97) = 134.84g/mol
learn more:
Molar mass brainly.com/question/2861244
#learnwithbrainly
It is either mass or volume
Answer:
Rb: [Kr] 5s
Step-by-step explanation:
Rb is element 37, the first element in Period 5.
It has one valence electron, so its valence electron configuration is 5s.
The noble gas configuration uses the symbol of the previous noble gas as a shortcut for the electron configurations of the inner electrons.
The preceding noble gas is Kr, so the electron configuration is Rb: [Kr] 5s.
Answer: Oxalic Acid is and
Arrhenius Acid.
Explanation: According to
Arrhenius Theory of acid and base, "Acid is any substance which when dissolved in water produces H⁺ Ions".
Therefore, Oxalic Acid is a diprotic substance, which is capable of donating protons in water. This acidity of oxalic acid can be dedicated to the stability of
conjugate base, this stability comes from resonance of the negative charges on
Oxalate ion. Below reaction shows the dissociation of Oxalic Acid into Protons and Oxalate Ion.