Answer:
0.826 g/cm³
Explanation:
density = mass/volume
density = 715 g/866 cm³
density = 0.82564 g/cm³
Rounded to 3 significant figures: 0.826 g/cm³
Answer:
Explanation:
Hello!
In this case, given the chemical reaction:
In such a way, given the volumes and molarities of each reactant, we can compute the moles of produced iron (III) hydroxide by each of them, via the 3:1 and 1:1 mole ratios:
It means that the sodium hydroxide is the limiting reactant and 0.00833 moles of iron (III) hydroxide are produced; thus, the required mass is:
Answer is: 1,92 mol/L·s.
Chemical reaction: 2D(g) + 3E(g) + F(g) → <span>2G(g) + H(g).
</span>H is increasing at 0,64 mol/L·<span>s.
From chemical reaction n(H) : n(E) = 1 : 3.
0,64 mol : n(E) = 1 : 3.
n(E) = 1,92 mol.
</span>E is decreasing at 1,92 mol/L·s.
Answer: 44g
Explanation: The formular for finding Moles is ;
Moles = Mass / Molar Mass or Formular Mass.
Base on this question; Moles = 10, Mass = 440g, and Formular Mass = ?
Making 'Formular Mass', subject of the formular; we thus have;
Formular mass = Mass / Moles = 440/ 10 = 44g