Apply the rule: 
![3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3%5Bln%28x-1%29%5E%7B2%7D%20-%20lnx%20%5D%20%2B%20ln%28x%2B1%29)
Apply the rule : 
![3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3ln%5Cfrac%7B%28x-1%29%5E%7B2%7D%20%7D%7Bx%7D%20%2B%20ln%28x%2B1%29)
Apply the rule: 
![3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)](https://tex.z-dn.net/?f=3%5Bln%20%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Bln%20%28x%2B1%29%3D%20ln%20%5Cfrac%7B%28x-1%29%5E%7B6%7D%20%7D%7Bx%5E%7B3%7D%20%7D%20%2Blog%28x%2B1%29)
Finally, apply the rule: log a + log b = log ab
![3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }](https://tex.z-dn.net/?f=3%5Bln%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Blog%28x%2B1%29%3Dln%5Cfrac%7B%28x-1%29%5E%7B6%7D%28x%2B1%29%20%7D%7Bx%5E%7B3%7D%20%7D)
Given:
In triangle DEF, HG is parallel to DF.
To find:
The value of x.
Solution:
In triangles DEF and GEH,
(Common angle)
(Corresponding angle)
(By AA property of similarity)
We know that corresponding sides of similar triangle are proportional.





Isolating variable terms, we get



Therefore, the value of x is equal to 4.
An equilateral triangle is a triangle where all sides are of equal lengths. So, the angles are of equal values as well which is 60. We use the angle and the height of the triangle to determine the side length. We do as follows:
tan (60) = 15 / base/2
base = 10√3 = side length
13.3 repeating all you have to do is convert them into seconds and divide them by nine
100% increase. If you think about it, a 50% increase in price would be 7.5 (15/2), so therefore a 100% increase would just be $15.