Answer:
35g^2 +38g +8
Step-by-step explanation:
Answer:
А.The system has two solutions, but only one is viable because the other results in a negative width.
Step-by-step explanation:
Given
Let:
length of play area A
width of play area A
length of play area B
width of play area B
Area of A
Area of B
From the question, we have the following:




The area of A is:

This gives:

Open bracket

The area of B is:


Substitute: 

Open brackets


Expand


We have that:

This gives:

Collect like terms


Using quadratic calculator, we have:
or
--- approximated
But the width can not be negative; So:

Answer:
Yes
Step-by-step explanation:
You can conclude that ΔGHI is congruent to ΔKJI, because you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K).
We also know that we have two congruent sides, since it provides the information that line GK bisects line HJ, meaning that they have been split evenly (they have been split, with even/same lengths).
<u><em>So now we have three congruent angles, and two congruent sides. This is enough to prove that ΔGHI is congruent to ΔKJI,</em></u>
<u><em /></u>
Answer: -2
Step-by-step explanation: