Explanation:
Worms are invertebrate animals with bilateral symmetry. Worms have a definite anterior (head) end and a posterior (tail) end. The ventral surface of worms and other organisms is the bottom side of the body, often closest to the ground. The dorsal surface is located on the upper part of the body facing the sky. The lateral surfaces are found on the left and right sides of the body. Figure 3.35 compares bilateral symmetry in a whale shark and a swimming plychaete worm. Organs for sensing light, touch, and smell are concentrated in the heads of worms. They can detect the kinds of environment they encounter by moving in the anterior direction
Answer:
The correct answer will be-
1. decrease in blood volume
2. secretion of renin from juxtaglomerular apparatus
3. production of angiotensin II
4. secretion of aldosterone
5. sodium reabsorbed from distal tubules and collecting ducts
Explanation:
The RAAS pathway or Renin-angiotensin II-aldosterone pathway gets activated in the human body to maintain the osmolarity and blood volume.
When the receptors in the blood sense the low volume of water in the body sends signals to the brain which activates the secretion of the renin from the juxtaglomerular cells. Renin helps converts the inactive angiotensin to angiotensin I and II which help reabsorption of sodium ions. This activates the production of aldosterone which increases the reabsorption of the sodium ions into distal and collecting ducts.
Answer:
large central vacuole
cell wall
Explanation:
Let me clear some things up for you. There are two types of cells - Prokaryotes and Eukaryotes. The principle difference between these types of cells are the structure of their genome. In case of prokaryotes, the genomic matter do not have a defined structure, it just kind of floats around in the protoplasm. But in the eukaryotes, the genome is more structured, have all kinds of proteins associated with them, and is surrounded by a two layered sack called the nuclear membrane. Both plant and animal cells have these feature of structured nucleus, therefore, they are both eukaryotes.
Now for the difference between plant and animal cells. the features you mentioned are unique about plant cells, but do not rule them out from being eukaryotes, as the 'true' structure of the nucleus is still there. Cell walls are necessary for the plant cells because plants do not posses an endoskeleton like most of the animals do. The cell wall makes the whole plant rigid so they don't fall apart or appear like a blob. Chloroplast is where photosynthesis happens, so it should most definitely be in a plant cell. Animals don't do photosynthesis so they don't have chloroplasts. Vacuoles are also present in animal cells, but they are much smaller, greater in number, and are known as lysosomes. Functionally they are virtually the same.
Multicellular organisms begin as a single cell. These cells then grow and undergo differentiation, the process by which cells develop specialized forms and functions.In multicellular organisms, cells are often organized into tissues, organs, and organ systems.