Answer:
a)30.14 rad/s2
b)43.5 rad/s
c)60633 J
d)42 kW
e)84 kW
Explanation:
If we treat the propeller is a slender rod, then its moments of inertia is

a. The angular acceleration is Torque divided by moments of inertia:

b. 5 revolution would be equals to
rad, or 31.4 rad. Since the engine just got started


c. Work done during the first 5 revolution would be torque times angular displacement:

d. The time it takes to spin the first 5 revolutions is

The average power output is work per unit time
or 42 kW
e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:
or 84 kW
<h2>
Answer: 7020.117 m/s</h2>
Explanation:
The velocity of a satellite describing a circular orbit is<u> constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting, in this case, the Earth
.
the radius of the orbit (measured from the center of the planet to the satellite).
This means the radius of the orbit is equal to <u>the sum</u> of the average radius of the Earth
and the altitude of the satellite above the Earth's surface
.
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. It depends on the mass of the massive body (the Earth).
Now, rewriting equation (1) with the known values:
Answer:
A) a neutron pushing on another neutron.
Explanation:
Neutrons have no charge, therefore, there is no electric force among them. Protons and electrons on the other hand do have electric charge (electrons negative charge and protons positive charge) that generate electric forces between them that can be repelling forces (if the charges are of the same sign), or attractive forces (if the charges are of opposite signs).
Fluorine (F) has higher potential energy as Neon (N) is a noble/inert gas.
Fluorine will lose another electron to gain stability.
A) Vt = Vo - gt
= 0 - 9.8 . 2
= - 19.6 m/sec (acting downward)
b) ∆y = Vt^2 - Vo^2 / 2g
= (-19.6)^2 - 0 / 19.6 = 19.6 meters