Answer:
T = 2.83701481512 seconds
Explanation:
Hi!
The formula that you will want to use to solve this question is:
T--> period
L --> length of the pendulum
g --> acceleration due to gravity (9.8m/s^2)
since we know that the mass of the bob at the end of the pendulum does not affect the period of the pendulum, we can go ahead and ignore that bit of information (unless, of course, the weight causes the pendulum to stretch)
so now we can plug in our given info into the formula above and solve!
T = 2*pi * sqrt(2/9.8)
T = 2.83701481512 seconds
*Note*
- I used 3.14 to pi, if you need to use a different value for pi (a longer version, etc) your answer will be slightly different
I hope this helped!
The answer is most likely A
Answer:
center of mass of the two masses will lie at x = 2.52 cm
center of gravity of the two masses will lie at x = 2.52 cm
So center of mass is same as center of gravity because value of gravity is constant here
Explanation:
Position of centre of mass is given as

here we have




now we have



so center of mass of the two masses will lie at x = 2.52 cm
now for center of gravity we can use

here we have




now we have



So center of mass is same as center of gravity because value of gravity is constant here