Answer:
P = 7196 [kPa]
Explanation:
We can solve this problem using the expression that defines the pressure depending on the height of water column.
P = dens*g*h
where:
dens = 1028 [kg/m^3]
g = 10 [m/s^2]
h = 700 [m]
Therefore:
P = 1028*10*700
P = 7196000 [Pa]
P = 7196 [kPa]
When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
The power that the light is able to utilize out of the supply is only 0.089 of the given.
Power utilized = (0.089)(22 W)
= 1.958 W
= 1.958 J/s
The energy required in this item is the product of the power utilized and the time. That is,
Energy = (1.958 J/s)(1 s) = 1.958 J
Thus, the light energy that the bulb is able to produce is approximately 1.958 J.
To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say



Answer:
Gamma rays
Explanation:
Gamma rays is at the end of the electromagnetic spectrum, and has the highest energy. It propagates through space at 3x10^8 m/s and has the smallest wavelength and the highest frequency. It is given off by atoms of element as they undergo nuclear disintegration.