1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Concentration in chemistry is calculated by dividing a constituent's abundance by the mixture's total volume.
It is calculated in mg/ml.
The unit of measurement frequently used for electrolytes is the milliequivalent (mEq). This value compares an element's chemical activity, or combining power, to that of 1 mg of hydrogen.
Formula for calculating concentration in mg/ml is
Conc. (mg/ml) = M(eq) /ml × Molecular weight / Valency
Given
M(eq) NaCl/ ml = 23.5
Molecular weight pf NaCl = 58.5 g/mol
Valency = 1
Putting the values into the formula
Conc. (mg/ml) = 23.5 ×58.5/1
= 1374.75 mg/ml
Hence, 1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Learn more about Concentration here brainly.com/question/14500335
#SPJ4
Answer:
<u><em>Pentane </em></u>
Explanation:
since we have in here CH3-CH2-CH2-CH2-CH3 5 Carbon atoms and 12 Hydrogen making it 
Explanation:
firstly find for the molar mass of kcl and molar mass of k
and then
molar mass of k = x
molar mass of kcl= 40
cross mutiply and then simplify you will get your answer
Answer: incompressibility, rigidity, and density
Explanation:
Answer:
The Aufbau Principle simply helps us determine electron configuration of an atom by stating that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy level, then they fill subshells of higher energy level. For example, the 1s subshell is filled before the 2s subshell is occupied. Now, when trying to figure out the electron configuration of a calcium, you need to know its atomic number to determine its amount of total electrons. Calcium has an atomic number of 20, which means it has 20 protons and 20 electrons. First remember that the "s" subshell only holds 2 electrons, the "p" subshell only hold 6 electrons, and the "d" subshell only holds up to 10 electrons. Using the Aufbau principle below, we can determine that the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s is now full we'll move to the 3p where we'll place the next six electrons. We now go to the 4s orbital where we place the remaining two electrons. With this, the calcium electron configuration will be:

Hope that helps you understand!