<span>The mass of one mole of sodium bicarbonate (aka NaHCO3) is equal to 1 * 22.99g/mol + 1 * 1.00g/mol + 1 * 12.01g/mol + 3 * 16.00g/mol = 83.91g/mol. From this, we can convert 4.2g of NaHCO3 to moles by dividing by 83.91g/mol, to get 0.050 moles of sodium bicarbonate.</span>
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer: C) middle 50 percent of the data
The interquartile range (IQR) spans from the first quartile Q1 to the third quartile Q3.
25% of the data is below Q1 and 75% of the data is below Q3. The gap between the two endpoints consists of 75-25 = 50 percent of the data, or half of the data.
An object that is not already moving will begin to move in the direction of the larger force. An object that is already moving will change its speed and/or its direction.