Answer:
The mass of
in the container is 2.074 gram
Explanation:
Given:
Volume of
lit
Equilibrium constant 
The reaction in which
is produced
⇄ 
Here equal moles of
and
is formed.
From the formula of equilibrium constant,


M
Above value shows,

So in 2 L no. moles of
=
moles.
So mass of 0.122 mole of
is =
g
Therefore, the mass of
in the container is 2.074 gram
hola, esta pregunta es bastante difícil pero está bien, no lo sé, lo siento :) :)
it would be a crystalline solid, because it could be extended in multiple directions.
Answer: The given statement is TRUE.
Explanation:
An equilibrium reaction is one in which rate of forward reaction is equal to the rate of backward reaction.
Equilibrium constant is defined as the ratio of the product of the concentration of products to the product of the concentration of reactants each raised to their stochiometric coefficient.
For example for the given equilibrium reaction;

![K_{eq}=\frac{[H_2]^2[O_2]}{[H_2O]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BO_2%5D%7D%7B%5BH_2O%5D%5E2%7D)
Thus the given statement that in calculating the equilibrium constant for a reaction, the coefficients of the chemical equation are used as exponents for the factors in the equilibrium expression is True.
Based on the charge on the aluminium ion, 0.9 g of aluminium are deposited by 0.1 F of electricity.
<h3>What is electrolysis?</h3>
Electrolysis is the decomposition of a substance known as an electrolyte when electric current is passed through it.
The mass and hence moles an electrolyte deposited when current is passed through it depends on the charge on the ion.
Aluminium ion has a charge of +3 and requires 3F of electricity to deposit 1 mole or 27 g of aluminium
0.1 F will discharge = 0.1/3 × 27 g of aluminium
mass of aluminium deposited = 0.9 g of aluminium.
Therefore, 0.9 g of aluminium are deposited by 0.1 F of electricity.
Learn more about electrolysis at: brainly.com/question/26050361