The ratio of the areas:
225 : 36 = 15² : 6²
The ratio of their corresponding sides:
15 : 6 = 5 : 2
Answer:
x = 9
m Angle B = 54
m Angle E = 54
Step-by-step explanation:
As m Angle B and m Angle E are congruent,
5x + 9 = 7x - 9
-2x = - 18
x = 9
m Angle B = 5x + 9 = 54
m Angle B = m Angle E
Therefore, m Angle E = 54
Answer:
a=bh
Step-by-step explanation:
you don't have a picture for what youre specifically looking for but that is the formula to figure it out.
Answer:
15+6+2=23
Step-by-step explanation:
![\sqrt[3]{\frac{9\sqrt{5}}{2\sqrt{3}}\cdot\frac{5\sqrt{2}}{8\sqrt{2}}}\\=\sqrt[3]{\frac{9\sqrt{5}}{2\sqrt{3}}\cdot\frac{5}{8}}\\=\sqrt[3]{\frac{45\sqrt{5}}{16\sqrt{3}}}\\=\sqrt[3]{\frac{45\sqrt{15}}{16}}\\=\sqrt[3]{\frac{3\cdot\sqrt{15^3}}{16}}\\=\frac{\sqrt[3]{3}\cdot\sqrt{15}}{2\cdot\sqrt[3]{2}}\\=\frac{\sqrt[3]{6}\cdot\sqrt{15}}{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B9%5Csqrt%7B5%7D%7D%7B2%5Csqrt%7B3%7D%7D%5Ccdot%5Cfrac%7B5%5Csqrt%7B2%7D%7D%7B8%5Csqrt%7B2%7D%7D%7D%5C%5C%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B9%5Csqrt%7B5%7D%7D%7B2%5Csqrt%7B3%7D%7D%5Ccdot%5Cfrac%7B5%7D%7B8%7D%7D%5C%5C%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B45%5Csqrt%7B5%7D%7D%7B16%5Csqrt%7B3%7D%7D%7D%5C%5C%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B45%5Csqrt%7B15%7D%7D%7B16%7D%7D%5C%5C%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3%5Ccdot%5Csqrt%7B15%5E3%7D%7D%7B16%7D%7D%5C%5C%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B3%7D%5Ccdot%5Csqrt%7B15%7D%7D%7B2%5Ccdot%5Csqrt%5B3%5D%7B2%7D%7D%5C%5C%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B6%7D%5Ccdot%5Csqrt%7B15%7D%7D%7B2%7D)
we want it in the form of
, so a = 15, b=6, c=2
also this is the minimum possible value, as we cannot simplify it further
<span><span>In order to calculate the initial price of the motorcycle, we use the formula:
Total item price=(Item price*tax rate)+item price.
Rearranging the equation to solve for the
unknown:
Item price=total item price/Tax rate.
Substituting the real values
into the formula:
Item cost=1,437/12.5%. The result of this equation
determines that the original price of the motorcycle (not including tax) is:
$11,496-$1,437=$10,059</span></span>