Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction, it is possible for us to calculate the produced grams of nitrogen monoxide by starting with 25.0 g of nitrogen via their 1:2 mole ratio and the molar masses of 30.1 g/mol and 28.02 g/mol, respectively and by some stoichiometry:

Best regards!
1) Chemical reaction:
Fe2O3 + 2Al ---> Al2O3 + 2Fe
2) molar ratios
1 mol Fe2O3 : 2Al : 1 mol Al2O3 : 2 mol Fe
3) Convert 15.0 g of iron into moles
atomic mass Fe = 55.8 g/mol
moles = mass in grams / atomic mass = 15.0 g / 55.8 g/mol = 0.269 mol
4) Use proportions to determine the moles of Fe2O3, Al, and Al2O3
a) 1mol Fe2O3 / 2 mol Fe = x / 0.269 mol Fe
x =
=> x = 0.269 mol Fe * 1 mol Fe2O3 / 2 mol Fe = 0.134 mol Fe2O3
b) 2 mol Al / 2 mol Fe = x / 0.269 mol Fe
=> x = 0.269 mol Al
c) 2 mol Fe / 1 mol Al2O3 = 0.269 mol Fe / x
=> x = 0.269 mol Fe * 1 mol Al2O3 / 2 mol Fe
x = 0.134 mol Al2O3
5) Convert moles to grams
a) Fe2O3
molar mass Fe2O3 = 2* 55.8 g/mol + 3*16g/mol = 159.6 g/mol
mass = molar mass * number of moles
mass = 159.6 g/mol * 0.134 mol = 21.4 g
b) Al
atomic mass = 27.0 g/mol
mass = number of moles * atomic mass = 0.269 mol * 27.0 g/mol = 7.26 g
c) Al2O3
molar mass = 2 * 27.0 g/mol + 3*16.0 g/mol = 102.0g/mol
mass Al2O3 = numer of moles * molar mass = 0.134 mol * 102.0 g/mol = 13.7 g
Answers:
21.4 g Fe2O3
7.26 g Al
13.7 g Al2O3
Explanation: Oxygen plays a very vital role in the life of aquatic animals. The dissolved oxygen in the water helps them to breathe under water.
Optimum level of oxygen for deep living animals like oysters, bottom feeders, crabs is around (1-6 mg/L), while the animals living on the upper side like fishes require a higher amount of around (4-6 mg/L).
If the oxygen concentration in the pond is not optimum, there will no aquatic life and hence, the ecosystem will be affected.
Hence, oxygen concentration affects the fishes that live in the pond to a higher extent.
Answer:
Green food coloring diffusing through cookie dough.
Explanation:
Entropy is a physical quantity for an equilibrium thermodynamic system that measures the degree of organization of the system, or that is the ratio of an increase in internal energy to an increase in temperature of the system.
When the green dye diffuses through the cookie dough there is an increase in entropy, that is, there is an increase in system disorder at the molecular level, where a change in cookie dough occurs.