Answer:

Explanation:
The unbalanced nuclear equation is

Let's write the question mark as a nuclear symbol.

The main point to remember in balancing nuclear equations is that the sums of the superscripts and the subscripts must be the same on each side of the equation.
Then
98 = 0 + A, so A = 98 - 0 = 98, and
38 = -1 + Z, so Z = 38 + 1 = 39
Then, your nuclear equation becomes

Element 39 is yttrium, so the balanced nuclear equation is

Answer: Most decomposition reactions require an input of energy in the form of heat, light, or electricity. Binary compounds are compounds composed of just two elements. The simplest kind of decomposition reaction is when a binary compound decomposes into its elements.
Answer: Stressors
Explanation:
it can deplete aquifers include changes in precipitation and snowmelt patterns
Answer:
D. MgO
Explanation:
We need to look at the charge of element. (Look at a periodic table for this)
Mg, which is Magnesium, has a charge of 2+ because it's in the second column, or group, from the left.
O, which is Oxygen, has a charge of 2- because it's in the second column, or group, from the right.
Since Mg is 2+, it's the cation and since O is 2-, it's the anion. We can put these two elements together into an ionic compound.
Mg^(2+) and O^(2-) becomes Mg2O2, where we can cancel the 2s: MgO.
Thus, the answer is D.
Hope this helps!
Answer:
1.65 L
Explanation:
The equation for the reaction is given as:
A + B ⇄ C
where;
numbers of moles = 0.386 mol C (g)
Volume = 7.29 L
Molar concentration of C = 
= 0.053 M
A + B ⇄ C
Initial 0 0 0.530
Change +x +x - x
Equilibrium x x (0.0530 - x)
![K = \frac{[C]}{[A][B]}](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%7D%7B%5BA%5D%5BB%5D%7D)
where
K is given as ; 78.2 atm-1.
So, we have:
![78.2=\frac{[0.0530-x]}{[x][x]}](https://tex.z-dn.net/?f=78.2%3D%5Cfrac%7B%5B0.0530-x%5D%7D%7B%5Bx%5D%5Bx%5D%7D)


Using quadratic formula;

where; a = 78.2 ; b = 1 ; c= - 0.0530
=
or 
=
or 
= 0.0204 or -0.0332
Going by the positive value; we have:
x = 0.0204
[A] = 0.0204
[B] = 0.0204
[C] = 0.0530 - x
= 0.0530 - 0.0204
= 0.0326
Total number of moles at equilibrium = 0.0204 + 0.0204 + 0.0326
= 0.0734
Finally, we can calculate the volume of the cylinder at equilibrium using the ideal gas; PV =nRT
if we make V the subject of the formula; we have:

where;
P (pressure) = 1 atm
n (number of moles) = 0.0734 mole
R (rate constant) = 0.0821 L-atm/mol-K
T = 273.15 K (fixed constant temperature )
V (volume) = ???

V = 1.64604
V ≅ 1.65 L