Conjugate base of Propanoic acid (
is propanoate where -COOH group gets converted to -CO
. The structure of conjugate base of Propanoic acid is shown in the diagram.
The
above which 90% of the compound will be in this conjugate base form can be determined using Henderson's equation as propanoic acid is weak acid and it can form buffer solution on reaction with strong base.
=
+ log
=4.9+log
=5.85
As 90% conjugate base is present, so propanoic acid present 10%.
<h3>
Answer:</h3>
2 L Ne
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.07 mol Ne (g)
<u>Step 2: Identify Conversions</u>
STP - 22.4 L per mole
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
1.568 L Ne ≈ 2 L Ne
Answer:
the volume will expand
Explanation:
gas under pressure contracts, and expands with a lesser pressure
Answer:
V₂ = 6.0 mL
Explanation:
Given data:
Initial volume = 9.0 mL
Initial pressure = 500 mmHg
Final volume = ?
Final pressure = 750 mmHg
Solution:
According to Boyle's Law
P₁V₁ = P₂V₂
V₂ = P₁V₁ / P₂
V₂ = 500 mmHg × 9.0 mL / 750 mmHg
V₂ = 4500 mmHg .mL / 750 mmHg
V₂ = 6.0 mL