In order to maintain neutrality, the negatively charged ions in the salt bridge will migrate into the anodic half-cell. A similar (but reversed) situation is found in the cathodic cell.
<h3>
What purpose does a salt bridge serve in an oxidation process?</h3>
Anions (negatively charged particles) are added to the solution of the oxidation half of the cell by the salt bridge, and cations (positively charged particles) are added to the solution of the reduction half of the reaction.
<h3>
What purpose does the salt bridge serve in a galvanic cell?</h3>
For instance, KCl, AgNO3, etc. In a galvanic cell, such as a voltaic cell or Daniel cell, salt bridges are typically used. A salt bridge's primary job is to assist in preserving the electrical neutrality of the internal circuit. Additionally, it aids in keeping the cell's response from reaching equilibrium.
Learn more about Salt bridge here:-
brainly.com/question/20345420
#SPJ4
Not very much because half the time the water is purified but just normal water in my area probably has serious levels of scarcity.
Explanation:
For the first part,
Reaction equation:
N₂ + 3H₂ → 2NH₃
Given:
Number of moles of NH₃ = 6 moles
Unknown:
Number of moles of N₂ = ?
Solution:
N₂ + 3H₂ → 2NH₃;
From the reaction above, we solve from the known specie to the unknown. Ensure that the equation is balanced;
2 moles of NH₃ is produced from 1 mole of N₂
6 moles of NH₃ will be produced from
mole of N₂
= 3moles of N₂
The number of moles of N₂ is 3 moles
ii.
Given parameters:
Number of moles of sulfur = 2.4moles
Molar mass of sulfur = 32.07g/mol
Unknown:
Mass of sulfur = ?
Solution:
The number of moles of any substance can be found using the expression below;
Number of moles = 
Mass of sulfur = number of moles of sulfur x molar mass
Insert the parameters and solve;
Mass of sulfur = 2.4 x 32.07 = 76.97g
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
50% - you have two bb pairs