We know that the change in momentum is equals to the product of force and time that is impulse (
). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

Here, u is initial velocity which is zero.
.
Thus, impulse

From Newton`s second law,

Therefore, impulse

Given,
and 
Substituting these values, we get
Change in momentum = impulse
.
Answer:
2.2 µm
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
Given wavelength = 597 nm
Angle,
= 15.8°
First bright fringe means , m = 1
So,
Also,
1 nm = 10⁻⁹ m
1 µm = 10⁻⁶ m
So,
1 nm = 10⁻³ nm
Thus,
<u>Distance between slits ≅ 2.2 µm</u>
Answer:
The sea level will be 5m higher in 1667 y (years)
Explanation:
From the question, the rate at which the ocean's level is currently rising is about 3mm per year.
First, we will convert mm (millimeter) to m (meter)
1 mm = 0.001 m
Then,
3 mm = 3 × 0.001 m
= 0.003m
That is, the rate at which the ocean's level is currently rising is about 0.003m per year.
Now, to determine how long it will take for the ocean's level be 5 m higher than now at the given rate,
If the ocean rises 0.003 m in 1 year, then
the ocean will rise 5 m in x years
x = (5 m × 1 year) / 0.003 m
x = 5 / 0.003
x = 1666.67 years
x ≅ 1667 years
Hence, the sea level will be 5m higher in 1667 y (years)
Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:
