Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
13.0m/s
1.2m/s
Explanation:
Given parameters:
Initial speed of the body = 7.1m/s
time taken = 2.23s
Acceleration = 2.64m/s²
Unknown:
Final speed = ?
Solution:
Acceleration is the rate of change of velocity with time.
a = 
a = acceleration
V = final speed
U = initial speed
T = time taken
Input the variables and solve for V;
2.64 =
V - 7.1 = 5.9 expression 1
V = 5.9 + 7.1 = 13.0m/s
B
Using the same parameters, the speed after a uniform deceleration of -2.64m/s², the negative sign implies deceleration;
from expression 1;
V - 7.1 = -5.9
V = -5.9 + 7.1 = 1.2m/s
learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
Answer:
uujjjjjctc7tox7txr9ll8rz8lr5xl8r6l8dl85x8rl5x8rl5x8rl5xrx8l58rk5xr8l5xr6l8xr68lc
Answer:
Displacement from the starting position is 103.21m
Explanation:
If you draw these directions, it will create the two legs of a triangle.
Using this method, you can visualize why your displacement is what it is.
Using the pythagorean theorem

Plug in both values


c = 103.2085
c= 103.21