<h3>
Answer:</h3>
2.0 mol C₆H₁₂O₆
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.2 × 10²⁴ molecules C₆H₁₂O₆ (glucose)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:
- Divide:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1.99269 mol C₆H₁₂O₆ ≈ 2.0 mol C₆H₁₂O₆
Answer:
I think that is the literal answer
Based on the solubility observations, barium & aluminum could be distinguished by the addition of sodium chloride to the solutions.
<h3>What happens when NaCl is added to a solution?</h3>
- The ionic link that held sodium and chloride ions together is broken when water molecules force the ions apart.
- The sodium and chloride atoms are encircled by water molecules after the salt compounds are separated. After that, the salt dissolves and forms a homogenous solution.
- In order to keep patients from dehydrating, sodium chloride, an important nutrient, is employed in healthcare. It is employed as a spice to improve flavor and as a food preservative. Additionally, sodium chloride is employed in the production of polymers and other goods. Additionally, it is used to de-ice sidewalks and roadways.
- Adding water to sodium chloride results in a physical change because no new product is created.
Learn more about sodium chloride added to a solution refer to :
brainly.com/question/28092739
#SPJ4
The reaction produces 2.93 g H₂.
M_r: 133.34 2.016
2Al + 6HCl → 2AlCl₃ + 3H₂
<em>Moles of AlCl₃</em> = 129 g AlCl₃ × (1 mol AlCl₃/133.34 g AlCl₃) = 0.9675 mol AlCl₃
<em>Moles of H₂</em> = 0.9675 mol AlCl₃ × (3 mol H₂/2 mol AlCl₃) = 1.451 mol H₂
<em>Mass of H₂</em> = 1.451 mol H₂ × (2.016 g H₂/1 mol H₂) = 2.93 g H₂
Answer:
C5H5N is the base and C5H5NH+ is the conjugate acid
H2O is the acid and OH− is the conjugate base
Explanation:
<u>Hydrogen + is also called a proton</u>
C5H5N is the base because it receives the proton (H+) and C5H5NH+ is its conjugate acid
H2O is the acid because it gives up the proton and OH− is the conjugate base because it is capable of receiving the proton
Answer:
HNO3 is the acid and NO3- is the conjugate base
H2O is the base and H3O+ is the conjugate acid
Explanation
HNO3 is the acid and NO3− is its conjugate base, capable of receiving a proton
H2O is the base because it receives the proton and H3O+ is a conjugate acid capable of giving up the proton.