Answer:
Mass, m = 1.51 grams
Explanation:
It is given that,
The circumference of Aluminium cylinder, C = 13 mm = 1.3 cm
Length of the cylinder, h = 4.2 cm
We know that the density of the Aluminium is 2.7 g/cm³
Circumference, C = 2πr

Density is equal to mass per unit volume.

m is mass of the cylinder
V is the volume of the cylinder

So,

So, the mass of the cylinder is 1.51 grams.
The specific gravity of a sample is the ratio of the density of the sample with respect to one standard sample. The standard sample used in specific gravity calculation is water whose density is 1 g/mL. The solution having specific gravity 1.30 is the density of the sample that is 1.30 g/mL. Thus the weight of the 30 mL sample is (30×1.30) = 39 g.
Now the mass of the 10 mL of water is 10 g as density of water is 10 g/mL. Thus after addition the total mass of the solution is (39 + 10) = 49g and the volume is (30 + 10) = 40 mL. Thus the density of the mixture will be
g/mL. Thus the specific gravity of the mixed sample will be 1.225 g/mL.
Answer:
here
Explanation:
What is the total mass of $$3.01 x 10^23$$ atoms of helium gas?
✓ Well $$"Avogadro's number"$$ of helium atoms has a mass of $$4.0*g$$. Explanation: And $$"Avogadro's number"$$
The total amount of heat required is the sum of all the sensible heat and latent heats involved in bringing the ice to a desired temperature and state. The latent heat of fusion and vaporization of water 333.55 J/g and 2260 J/g, respectively. Solving for the total amount of heat,
total amount of heat = 13.0 g (2.09 J/gC)(12) + 13(333.55 J/g) + 13.0 g (4.18 J/gC)(100 - 0) + (13.0 g)(2260 J/g) + (13 g)(2.01 J/g)(113-100)
= 39815.88 J
= 39.82 kJ
Answer:
evaporation?
Explanation:
evaporate the water leaving behind the sand?