Explanation:
Here we will apply the law of conservation of momentum which is one of the powerful laws of physics. As this law states that the "if no external forces are acting on the system then the net momentum of the system before and after must remain conserved. As the astronaut has a hammer, if he throws it in the direction opposite of his space craft, he will automatically move towards the space craft to conserve the momentum. That's how he can reach the space craft easily by throwing away the hammer.
Answer : First of all, to harness the solar energy and utilize it for the decomposition of water to make hydrogen fuel cell seems to be easy but practically it has many hurdles in its way. It might not work well, when the days would not be sunny. Also, the production of hydrogen fuel would require decomposing water which may need a high energy of activation, which would be more than the energy that will be produced from the fuel cell.
Answer:
4.981 MeV
Explanation:
The quantity of energy Q can be calculated using the formula
Q = (mass before - mass after) × c²
Atomic Mass of thorium = 232.038054 u, atomic of Radium = 228.0301069 u and mass of Helium = 4.00260. The difference of atomic number and atomic mass between the thorium and radium ( 232 - 228) and ( 90 - 88) show α particle was emitted.
1 u = 931.494 Mev/c²
Q = (mass before - mass after) × c²
Q = ( mass of thorium - ( mass of Radium + mass of Helium ) )× c²
Q = 232.038054 u - ( 228.0301069 + 4.00260) × c²
Q = 0.0053471 u × c²
replace 1 u = 931.494 MeV/ c²
Q = 0.0053471 × c² × (931.494 MeV / c²)
cancel c² from the equation
Q = 0.0053471 × 931.494 MeV = 4.981 MeV
Answer:
T
beacuse:
Energy can be transferred from one object to another by doing work. ... When work is done, energy is transferred from the agent to the object, which results in a change in the object's motion (more specifically, a change in the object's kinetic energy).