The molecules of a solid vibrate faster so that they start spreading out to become a liquid. This energy makes them vibrate faster so the bonds between molecules can't interact all that well anymore creating more distance. The stronger the bonds between the molecules the higher the energy (temperature) has to be to get them away from each other. Hope I didn't confuse you too much!
Answer:
Acceleration
Explanation:
Its speed or velocity change
The pipeline will run 1,100 miles, from the Sangachal terminal near Baku, the capital of Azerbaijan, through Georgia and to the Turkish Mediterranean port of Ceyhan.
Answer:
150m
Explanation:
The relation of speed/time and distance/time is a derivative/integral one, as in speed is the derivative of distance (the faster you go, the faster the distance changes, duh!).
So we need to compute the integral of speed over time from 0.0s to 5.0s.
The easiest way here is to compute the area under the line (it's going to be faster than computing the acceleration and using a formula of distance based on acceleration).
The area under the line is a trapezoid with "height" 5s, and the bases 10m/s and 50m/s. Using the trapezoid area formula of h*(a + b)/2
distance = 5s * (10m/s + 50m/s) / 2 = 5s * 60m/s / 2 = 5s * 30m/s = 150m
Alternatively, we can use the acceleration formula:
a = (50m/s - 10m/s)/5s = 40m/s / 5s = 8m/s^2
distance = v0 * t + a * t^2 / 2 = 10m/s * 5s + 8m/s^2 * (5s)^2 / 2 = 50m + 8m * 25 / 2 = 50m + 100m = 150m.