<span>1.86 moles of hydrogen gas.
Since what the HCl is reacting with hasn't been mentioned, I'll assume zine. In that case, the balanced reaction is
Zn + 2HCl ==> ZnCl2 + H2
So for every 2 moles of HCl used, 1 mole of hydrogen gas will be generated. So let's figure out how many moles of HCl we have and then divide by 2.
Molarity is defined as moles/liter. So a 2.75 M HCl solution has 2.75 moles of HCl per liter. So the total number of moles we have is:
2.75 mole/L * 1.35 L = 3.7125 mol
And since we get 1 mole H2 per mole of HCl, we get:
3.7125 mol / 2 = 1.85625 mol
Rounding to 3 significant figures gives us 1.86 moles of hydrogen gas.</span>
Social cost, Economic costs and Environmental Costs could be reduced by using Renewable energy sources like Hydro Power, Solar Power, Wind Power, Biomass and Geothermal plants. They can provide sustainable energy services since they are available all of the time. They known to have less impacts on various aspects especially in the environmental aspect comparing it to nonrenewable resources like fossil fuel based power plants.
Answer:
just replace the 9 mole with 3.68 g of Al .
I think it will help you.
Answer:
using a more concentrated potassium hydroxide
Explanation:
<em>The option that would likely increase the rate of reaction would be to use a more concentrated potassium hydroxide.</em>
<u>The concentration of reactants is one of the factors that affect the rate of reaction. The more the concentration of the reactants, the faster the rate of reaction. </u>
Granted that there are enough of the other reactants, increasing the concentration of one of the reactants will lead to an increased rate of reaction.
Hence, using a more concentrated potassium hydroxide which happens to be one of the reactants would likely increase the rate of reaction.