Answer:
(0,0), (1,1), (2,2)
Step-by-step explanation:
When testing to find possible points in situations like this, I always start by testing with the origin point (0,0).
In this case:
4x+6y<24 ==> 0 + 0 < 24 TRUE, it satisfies the inequality.
We then try with (1,1):
4x+6y<24 ==> 4 + 6 < 24 TRUE, it satisfies the inequality.
And with (2,2):
4x+6y<24 ==> 8 + 12 < 24 TRUE, it satisfies the inequality.
Answer and explanation:
The gambler's fallacy is the fallacy of belief that if an event such as a loss occurs more frequently in the past, it is less likely to happen in the future. We assume here that this belief is true, therefore
If she loses, her probability of winning increases =3/4
If she wins, her probability to win is normal =1/2
Given that probability of winning is 1/2
Probability of losing is 1-1/2=1/2
Probability that she wins the tournament is probability that she wins the first two games and loses the last or wins the first game, loses the second and wins the last or loses the first game and wins the last two games or probability that she wins all three games
=1/2*1/2*1/2+1/2*1/2*3/4+1/2*3/4*1/2+1/2*1/2*1/2
=25/48
Probability of winning the tournament if she loses the first game
=1/2*3/4*1/2= 3/16
Note: whenever there is "or" in probability, you add
Answer:
60π
Step-by-step explanation:
2π(3 × 7 ) + 2π (3)^2
Distribute: 2x3x7 and 2x3^2
42π + 18π
That gives 60π.
Answer:
t+8
Step-by-step explanation:
duh
Can’t read the paper sry try again please