The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
thermal energy leads to an increase in the kinetic energy also increasing in temperature hope this helped!
Answer:
The correct answer is b.
Explanation:
The quantum number n specifies the energetic level of the orbital, the first level being the one with the least energy. As n increases, the probability of finding the electron near the nucleus decreases and the orbital energy increases.
In the case of atoms with more than one electron, the quantum number l also determines the sublevel of energy in which an orbital is found, within a certain energy level. The value of l is designated by the letters s, p, d, and f.
Have a nice day!
Independent variable: the student chooses to miss class.
dependent variable: in result of the student missing class his grade goes down.
hyposthesis: if the student misses class multiple times, then his grades will go down.
Zn, Cd, and Ag are transition metals that usually form only one monoatomic cation.
A monatomic cation is a cation made of only one atom.
Cations are positively charged ions, in this example Ag⁺, Cd²⁺ and Zn²⁺.
These cations form only one type of ion, while iron and copper form more than one type of cations.
Iron and copper form cations with different charges (Fe²⁺, Fe³⁺, Cu⁺, Cu²⁺).
It depends on electron configuration which type would be formed.
Electron configuration of zinc atom: ₃₀Zn 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s²
Transition metals are elements in the d-block of the Periodic table.
More about transition metals: brainly.com/question/12843347
#SPJ4