I like your profile picture:)
Answer:
As you may know, each element has a "fixed" number of protons and electrons.
These electrons live in elliptical orbits around the nucleus, called valence levels or energy levels.
We know that as further away are the orbits from the nucleus, the more energy has the electrons in it. (And those energies are fixed)
Now, when an electron jumps from a level to another, there is also a jump in energy, and that jump depends only on the levels, then the jump in energy is fixed.
Particularly, when an electron jumps from a more energetic level to a less energetic one, that change in energy must be compensated in some way, and that way is by radiating a photon whose energy is exactly the same as the energy of the jump.
And the energy of a photon is related to the wavelength of the photon, then we can conclude that for a given element, the possible jumps of energy levels are known, meaning that the possible "jumps in energy" are known, which means that the wavelengths of the radiated photons also are known. Then by looking at the colors of the bands (whose depend on the wavelength of the radiated photons) we can know almost exactly what elements are radiating them.
In my opinion it does. The more water the pot holds, the longer you need to wait for it to freeze. Since there is more water, some parts may not be completely frozen. An experiment you can try is to get an ice cube container and a pot. fill both of them and put them in the freezer for the same amount of time. When you take it out, the ice cubes should be frozen leaving the pot with cold water.
The answer is: Motion!
Have a great day
Newton's 2nd law:
Fnet = ma
Fnet is the net force acting on an object, m is the object's mass, and a is the acceleration.
The electric force on a charged object is given by
Fe = Eq
Fe is the electric force, E is the electric field at the point where the object is, and q is the object's charge.
We can assume, if the only force acting on the proton and electron is the electric force due to the electric field, that for both particles, Fnet = Fe
Fe = Eq
Eq = ma
a = Eq/m
We will also assume that the electric field acting on the proton and electron are the same. The proton and electron also have the same magnitude of charge (1.6×10⁻¹⁹C). What makes the difference in their acceleration is their masses. A quick Google search will provide the following values:
mass of proton = 1.67×10⁻²⁷kg
mass of electron = 9.11×10⁻³¹kg
The acceleration of an object is inversely proportional to its mass, so the electron will experience a greater acceleration than the proton.