Answer:
The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m
Energy approach has been used to sole the problem.
The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring
The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved
Explanation:
The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.
As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .
x = compression of the spring = 0.89
The answer is A i just took the test.
The relation between the angle of incidence and the angle of refraction is known as Snell's Law. Since the light travels with different speed in different media, the direction of the ray of light will change when it crosses the boundary between the two media
Answer:
ω = √(2T / (mL))
Explanation:
(a) Draw a free body diagram of the mass. There are two tension forces, one pulling down and left, the other pulling down and right.
The x-components of the tension forces cancel each other out, so the net force is in the y direction:
∑F = -2T sin θ, where θ is the angle from the horizontal.
For small angles, sin θ ≈ tan θ.
∑F = -2T tan θ
∑F = -2T (Δy / L)
(b) For a spring, the restoring force is F = -kx, and the frequency is ω = √(k/m). (This is derived by solving a second order differential equation.)
In this case, k = 2T/L, so the frequency is:
ω = √((2T/L) / m)
ω = √(2T / (mL))
I will say increasing temperature but you dont have that option on your list, so I would take B. Increasing Concentration.