They both are two different elements.SO the answer is Element
Answer:
the <em>ratio F1/F2 = 1/2</em>
the <em>ratio a1/a2 = 1</em>
Explanation:
The force that both satellites experience is:
F1 = G M_e m1 / r² and
F2 = G M_e m2 / r²
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- r is the orbital radius
- M_e is the mass of Earth
Therefore,
F1/F2 = [G M_e m1 / r²] / [G M_e m2 / r²]
F1/F2 = [G M_e m1 / r²] × [r² / G M_e m2]
F1/F2 = m1/m2
F1/F2 = 1000/2000
<em>F1/F2 = 1/2</em>
The other force that the two satellites experience is the centripetal force. Therefore,
F1c = m1 v² / r and
F2c = m2 v² / r
where
- m1 is the mass of satellite 1
- m2 is the mass of satellite 2
- v is the orbital velocity
- r is the orbital velocity
Thus,
a1 = v² / r ⇒ v² = r a1 and
a2 = v² / r ⇒ v² = r a2
Therefore,
F1c = m1 a1 r / r = m1 a1
F2c = m2 a2 r / r = m2 a2
In order for the satellites to stay in orbit, the gravitational force must equal the centripetal force. Thus,
F1 = F1c
G M_e m1 / r² = m1 a1
a1 = G M_e / r²
also
a2 = G M_e / r²
Thus,
a1/a2 = [G M_e / r²] / [G M_e / r²]
<em>a1/a2 = 1</em>
Answer:
Water gains energy during evaporation and releases it during condensation in the atmosphere
Explanation:
In the water cycle, heat energy is gained or lost by water as it undergoes various processes in the cycle.
In evaporation, water molecules gains energy because the molecules of water vibrate faster and become more energetic. Hence they are able to escape into the atmosphere from the surface of the liquid.
In condensation, the molecules of gaseous water looses energy and becomes liquid.
Hence, water gains energy during evaporation and releases it during condensation in the atmosphere.
Answer:
a) E = 0
b) 
Explanation:
The electric field for all points outside the spherical shell is given as follows;
a) 
From which we have;

E = 0/A = 0
E = 0
b) 


By Gauss theorem, we have;

Therefore, we get;

The electrical field outside the spherical shell


Therefore, we have;

Answer:
I took 3*sqrt(10/83)= 1.110349815
And rounded to 1.11 Hz
Explanation: