Answer:
Fnet - Fg
Explanation:
When an object is in an elevator, its weight varies with respect to the direction of movement of the elevator and the elevators acceleration.
The weight, W, of an object can be expressed as;
W = mg
where m is the object's mass, and g is the acceleration due gravity.
If the object is in an elevator that speed up, an apparent weight would be felt since both mass and elevator are moving against gravitational pull of the earth.
So that,
= mg + ma
where: mg is the weight of the object, and ma is the apparent weight.
Apparent weight (ma) =
- mg
The gas is in a rigid container: this means that its volume remains constant. Therefore, we can use Gay-Lussac law, which states that for a gas at constant volume, the pressure is directly proportional to the temperature. The law can be written as follows:

Where P1=5 atm is the initial pressure, T1=254.5 K is the initial temperature, P2 is the new pressure and T2=101.8 K is the new temperature. Re-arranging the equation and using the data of the problem, we can find P2:

So, the new pressure is 2 atm.
The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Answer:
Well the definition of an application is the act of putting to a special use or purpose so lam assuming that you want specific uses that scientists make of gravity in their work.
Well our first application has helped us to send satellites around the solar system with what Nasa calls gravity assist. Using a particular planets gravity to slingshot a satellite to another destination. Look it up.
The next application much simpler but here on Earth. There are many hydro-electric power stations in use all over the world. Water is stored at a high level and released falling 100s of metres to a turbine where it generates electricity.
Hope that helps.
Explanation:
Answer:
the power that can be generated by the river is 117.6 MW
Explanation:
Given that;
Volume flow rate of river v = 240 m³/s
Height above the lake surface a h = 50 m
Amount of power can be generated from this river water after the dam is filled = ?
Now the collected water in the dam contains potential energy which is used for the power generation,
hence, total mechanical energy is due to potential energy alone.
= m(gh)
first we determine the mass flow rate of the fluid m
m = p×v
where p is density ( 1000 kg/m³
so we substitute
m = 1000kg/m³ × 240 m³/s
m = 240000 kg/s
so we plug in our values into (
= m(gh) kJ/kg )
= 240000 × 9.8 × 50
= 117600000 W
= 117.6 MW
Therefore, the power that can be generated by the river is 117.6 MW