Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer:
percentage w a slug preference (start) - 35% (0.35)
percentage w a fish preference (start) - 65% (0.65)
percentage w a slug preference (end) - 25% (0.25)
percentage w a fish preference (end) - 75% (0.75)
hope this helps kind stranger
1) The mass of the continent is 
2) The kinetic energy of the continent is 274.8 J
3) The speed of the jogger must be 2.76 m/s
Explanation:
1)
The continent is a slab of side 5900 km (so the surface is 5900 x 5900, assuming it is a square) and depth 26 km, therefore its volume is:

The mass of the continent is given by

where:
is its density
is its volume
Substituting, we find the mass:

2)
To find the kinetic energy, we need to convert the speed of the continent into m/s first.
The speed is
v = 1.6 cm/year
And we have:
1.6 cm = 0.016 m

So, the speed is

Now we can find the kinetic energy of the continent, which is given by

where
is the mass
is the speed
Substituting,

3)
The jogger in this part has the same kinetic energy of the continent, so
K = 274.8 J
And its mass is
m = 72 kg
We can write his kinetic energy as

where
v is the speed of the man
And solving the equation for v, we find his speed:

Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly
-- Class I lever
The fulcrum is between the effort and the load.
The Mechanical Advantage can be anything, more or less than 1 .
Example: a see-saw
-- Class II lever
The load is between the fulcrum and the effort.
The Mechanical Advantage is always greater than 1 .
Example: a nut-cracker, a garlic press
-- Class III lever
The effort is between the fulcrum and the load.
The Mechanical Advantage is always less than 1 .
I can't think of an example right now.
Answer:
The answer is below
Explanation:
The initial velocity = u = 82.5 km/h = 22.92 m/s, the final velocity = 32.5 km/h = 9.03 m/s, diameter = 91.55 cm = 0.9144 cm
radius (r) = diameter / 2 = 0.9144 / 2= 0.4572 m
a) Initial angular velocity (
) = u /r = 22.92 / 0.4572 = 50.13 rad/s, final velocity (ω) = v / r = 9.03 / 0.4592 = 19.67 rad / s
θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
angular acceleration (α) is:

b)
c) θ = 95 rev * 2πr = 95 * 2π * 0.4572= 272.9 rad
a) When it stops, the final angular velocity is 0. Hence:

θ = 323 rad