Gravity is pulling everything down . Without it, we all would be floating.
Answer:
c. Clockwise
Explanation:
As per FARADAY's the rate of change in magnetic flux linked with a coil will induce EMF in the coil and this will result the induce current in the coil.
Here we know that the direction of induced current in the closed loop is in such a way that the magnetic flux due to induced current always oppose the flux due to which it is induced
So we can say that if the flux linked with the coil will increase with time then flux of induced current will be in opposite direction to oppose the increasing flux.
So here when magnetic field becomes stronger then the induced current is in such a way that will always oppose the increasing flux of magnetic field
So we will say that correct answer will be
c. Clockwise
... the angular tilt of the Earth's position on its axis relative to the sun
The last choice on the list is the correct one, for both #2 and #3.
Answer:
(a): The magnitude of the electric force on the small sphere = 
(b): Shown below.
Explanation:
<u>Given:</u>
- m = mass of the small sphere.
- q = charge on the small sphere.
- L = length of the silk fiber.
= surface charge density of the large vertical insulating sheet.
<h2>
(a):</h2>
When the dimensions of the sheet is much larger than the distance between the charge and the sheet, then, according to Gauss' law of electrostatics, the electric field experienced by the particle due to the sheet is given as:

<em>where,</em>
is the electrical permittivity of the free space.
The electric field at a point is defined as the amount of electric force experienced by a unit positive test charge, placed at that point. The magnitude electric field at a point and the magnitude of the electric force on a charge q placed at that point are related as:

Thus, the magnitude of the electric force on the small sphere is given by

The sheet and the small sphere both are positively charged, therefore, the electric force between these two is repulsive, which means, the direction of the electric force on the sphere is away from the sheet along the line which is perepndicular to the sheet and joining the sphere.
<h2>
(b):</h2>
When the sphere is in equilibrium, the tension in the fiber is given by the resultant of the weight of the sphere and the electric force experienced by it as shown in the figure attached below.
According to the fig.,

<em>where,</em>
= electric force on the sphere, acting along left.
= weight of the sphere, acting vertically downwards.
<em />

g is the acceleration due to gravity.