Light rays travel parallel to each other, no image formed
Answer:
Yes
Explanation:
Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).
F = Gm1m2/r²
This is a general physical law derived from
empirical observations by what Isaac Newton called inductive reasoning.
when distance is doubled the gravitational force will be reduced by quarter not half.
Sliding and Static.
Would be the right one here.
Answer:
C. Infrared and radio waves can pass through very dense materials without interference.
Explanation:
It was my study island question.
Answer:
<em>C) It is either ferromagnetic or paramagnetic</em>
Explanation:
The complete question is given below
We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?
A) It must be ferromagnetic.
B) It must be paramagnetic.
C) It is either ferromagnetic or paramagnetic.
D) It must be diamagnetic.
A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.
Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.
The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.
In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.