Answer:
As you know, the denser objects have more weight per unit of volume, this will mean that the force that pulls down these objects is a bit larger.
This will mean that the denser objects will always go to the bottom.
This clearly implies that the red liquid, the one with one of the smaller densities, can not be at the bottom.
There are some cases where a liquid with a small density may become a lot denser as the temperature or pressure changes, and in a case like that, we could see the red liquid at the bottom, but for this case, there is no mention of changes in the temperature nor in the pressure, so this can be discarded.
The only thing that makes sense is that the red part at the bottom is the base of the tube, and has nothing to do with the red liquid.
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Answer:
0.0196 j
Explanation:
i) The formula for kinetic energy is as follows: 0.5*m*v^2
ii) Since we have all the values all that's left is to plug them into the equation
iii) First, WE MUST, Convert grams into kgs as this is the SI unit of mass so 2.45/1000
iv) All that's left now is to plug it into the equation so:
0.5* (s.45/1000)*(4^2)
v) Lastly we add the unit joules at the end as we're talking about energy
Hope this was useful! :)
Answer:
1.08x10⁻⁷
Explanation:
F=(GM₁M₂)/r²
=((6.67x10⁻¹¹)(70)(52))/(1.5²)
=2.42788x10⁻⁷/2.25
=1.07905778x10⁻⁷
≈1.08x10⁻⁷
Answer:
Could you explain that more better?
Explanation: