Answer:
The change is momentum is given by ∆p=p(inital) - p(final) =4-2=2 kg.m/s
Explanation:
momentum is the product of mass and velocity (speed)
So it's initial momentum would be:
p=mv=(1)(4)=4 kg.m/s
It's final momentum is given by:
p=mv=(1)(2)=2 kg.m/s
Answer:
Its approx location is (5.18,1.9)
Explanation:
Using F( 5,2) = ( xy-1, y²-11)
= ( 5*2-¹, 2²-11)
= (9,-5)
= so at point t=1.02
(5,2)+(1.02-1)*(9,-5)
(5,2)+( 0.02)*(9,-5)
(5+0.18, 2-0.1)
= ( 5.18, 1.9)
There is synthesis
decomposition
double displacement
single displacement
combustion
metathesis
so i guess you could say 6
Answer
given,
mass of ball, m = 57.5 g = 0.0575 kg
velocity of ball northward,v = 26.7 m/s
mass of racket, M = 331 g = 0.331 Kg
velocity of the ball after collision,v' = 29.5 m/s
a) momentum of ball before collision
P₁ = m v
P₁ = 0.0575 x 26.7
P₁ = 1.535 kg.m/s
b) momentum of ball after collision
P₂ = m v'
P₂ = 0.0575 x (-29.5)
P₂ = -1.696 kg.m/s
c) change in momentum
Δ P = P₂ - P₁
Δ P = -1.696 -1.535
Δ P = -3.231 kg.m/s
d) using conservation of momentum
initial speed of racket = 0 m/s
M u + m v = Mu' + m v
M x 0 + 0.0575 x 26.7 = 0.331 x u' + 0.0575 x (-29.5)
0.331 u' = 3.232
u' = 9.76 m/s
change in velocity of the racket is equal to 9.76 m/s
I believe this is known as wave period.
hope this helps!