D)LT^-1 speed=distance(L)/time(T)——>L/T
Answer:![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Explanation:
Given
Three charges of magnitude q is placed at three corners and fourth charge is placed at last corner with -q charge
Force due to the charge placed at diagonally opposite end on -q charge

where
Distance between the two charges

negative sign indicates that it is an attraction force
Now remaining two charges will apply the same amount of force as they are equally spaced from -q charge

The magnitude of force by both the charge is same but at an angle of 
thus combination of two forces at 2 and 3 will be

Now it will add with force due to 1 charge
Thus net force will be
![F_{net}=\frac{kq^2}{(L)^2}\left [ \frac{1}{2}+\sqrt{2}\right ]](https://tex.z-dn.net/?f=F_%7Bnet%7D%3D%5Cfrac%7Bkq%5E2%7D%7B%28L%29%5E2%7D%5Cleft%20%5B%20%5Cfrac%7B1%7D%7B2%7D%2B%5Csqrt%7B2%7D%5Cright%20%5D)
Answer:

Explanation:
We know that charge on electron

r= 2 nm
We know that force between two charge given

Now by putting the value


We know that mass of electron
The mass of electron

F= m a
a= Acceleration of electron
a= F/m


initial velocity given that zero ,u=0


Answer: C
Both Technicians A and B
Explanation:
Only a DOT-approved flasher unit should be used for turn signals. And a parallel (variable-load) flasher will function for turn signal usage, although it will not warn the driver if a bulb burns out.
Answer : The energy of one photon of hydrogen atom is, 
Explanation :
First we have to calculate the wavelength of hydrogen atom.
Using Rydberg's Equation:

Where,
= Wavelength of radiation
= Rydberg's Constant = 10973731.6 m⁻¹
= Higher energy level = 3
= Lower energy level = 2
Putting the values, in above equation, we get:


Now we have to calculate the energy.

where,
h = Planck's constant = 
c = speed of light = 
= wavelength = 
Putting the values, in this formula, we get:


Therefore, the energy of one photon of hydrogen atom is, 