Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
a) 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b) 3.466 × 10¹¹ N/C
Explanation:
a)
p(r) = -A exp ( - 2r/a₀)
Q = ₀∫^∞ ₀∫^π ₀∫^2xπ p(r)dV = -A ₀∫^∞ ₀∫^π ₀∫^2π exp ( - 2r/a₀)r² sinθdrdθd∅
Q = -4πA ₀∫^∞ exp ( - 2r/a₀)r²dr = -e
now using integration by parts;
A = e / πa₀³
p(r) = - (e / πa₀³) exp (-2r/a₀)
Now Net charge inside a sphere of radius a₀ i.e Qnet is;
= e - (e / πa₀³) ₀∫^a₀ ₀∫^π ₀∫^2π r² exp (-2r/a₀)dr
= e - e + 5e exp (-2) = 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b)
Using Gauss's law,
E × 4πa₀ ² = Qnet / ∈₀
E = 4πa₀ ² × Qnet × 1/a₀²
E = 3.466 × 10¹¹ N/C
Answer:
V=3 m/s
t=12 seconds
S=?
S=V×t
S=3×12
S=36meters
So distance you travel is 36meters.
The object has potential and kinetic energy when it jumps into the air