Answer:
45 s .
Explanation:
The accelerator will first accelerate , then move with uniform velocity and at last it will decelerate to rest .
displacement s = ?
acceleration a = 1 m /s²
Final speed v = 5 m/s
initial speed u = 0
v² = u² + 2as
5² = 0 + 2 x 1 x s
s = 12.5 m
B) Let time of acceleration or deceleration be t
v = u + a t
5 = 0 + 1 t
t = 5 s
Similarly displacement during deceleration = 12.5 m
Total distance during uniform motion = 200 - ( 12.5 + 12.5 ) = 175 m .
velocity of uniform motion = 5 m /s
time during which there was uniform velocity = 175 / 5 = 35 s
Total time = 5 + 35 + 5 = 45 s .
The correct is Reverberation. A reverberation is created when a sound or signal is reflected causing a large number of reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air.
Its 30 kg cause I got 30 kg dude.
1.53 m/s toward the beach
Explanation:
The magnitude of the velocity of the runner is given by:

where
d is the displacement of the runner
t is the time taken
In this case, d=110 m and t=72 s, so the velocity of the runner is

Velocity is a vector, so it consists of both magnitude and direction: we already calculate the magnitude, while the direction is given by the problem, toward the beach.
In series: 35+50=85 R. In parallel: 1/((1/35)+(1/50))=20.8R.