Answer:
8/17
Step-by-step explanation:
The end behavior of the function y = x² is given as follows:
f(x) -> ∞ as x -> - ∞; f(x) -> ∞ as x -> - ∞.
<h3>How to identify the end behavior of a function?</h3>
The end behavior of a function is given by the limit of f(x) when x goes to both negative and positive infinity.
In this problem, the function is:
y = x².
When x goes to negative infinity, the limit is:
lim x -> - ∞ f(x) = (-∞)² = ∞.
Meaning that the function is increasing at the left corner of it's graph.
When x goes to positive infinity, the limit is:
lim x -> ∞ f(x) = (∞)² = ∞.
Meaning that the function is also increasing at the right corner of it's graph.
Thus the last option is the correct option regarding the end behavior of the function.
<h3>Missing information</h3>
We suppose that the function is y = x².
More can be learned about the end behavior of a function at brainly.com/question/24248193
#SPJ1
Answer:
8.4 x 10^10 in scientifif notation is the same, in regular its 84000000000
3 x 10^7 in scientific notation is the same and in regular its 30000000
63.8% to a fraction is 319/500