For the given function f(t) = (2t + 1) using definition of Laplace transform the required solution is L(f(t))s = [ ( 2/s²) + ( 1/s) ].
As given in the question,
Given function is equal to :
f(t) = 2t + 1
Simplify the given function using definition of Laplace transform we have,
L(f(t))s = 
= ![\int\limits^\infty_0[2t +1] e^{-st} dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cinfty_0%5B2t%20%2B1%5D%20e%5E%7B-st%7D%20dt)
= 
= 2 L(t) + L(1)
L(1) = 
= (-1/s) ( 0 -1 )
= 1/s , ( s > 0)
2L ( t ) = 
= ![2[t\int\limits^\infty_0 e^{-st} - \int\limits^\infty_0 ({(d/dt)(t) \int\limits^\infty_0e^{-st} \, dt )dt]](https://tex.z-dn.net/?f=2%5Bt%5Cint%5Climits%5E%5Cinfty_0%20e%5E%7B-st%7D%20-%20%5Cint%5Climits%5E%5Cinfty_0%20%28%7B%28d%2Fdt%29%28t%29%20%5Cint%5Climits%5E%5Cinfty_0e%5E%7B-st%7D%20%5C%2C%20dt%20%29dt%5D)
= 2/ s²
Now ,
L(f(t))s = 2 L(t) + L(1)
= 2/ s² + 1/s
Therefore, the solution of the given function using Laplace transform the required solution is L(f(t))s = [ ( 2/s²) + ( 1/s) ].
Learn more about Laplace transform here
brainly.com/question/14487937
#SPJ4
B), A),D), and I dontknow how to answer the last one
When you divide two fractions, you're actually multiplying one of them by the reciprocal of the other. First, find the reciprocal of the second fraction by flipping it upside down. Then, multiply it by the first fraction. (Numerator x numerator and denominator x denominator)

÷

Replace the second fraction with it's reciprocal

x

Multiply (-7 x 3 and 12 x 2)

Both 21 and 24 are divisible by three, so divide them by 3
The answer is (D) or 1728 In³