![\bf \textit{using the 2nd fundamental theorem of calculus}\\\\ \cfrac{dy}{dx}\displaystyle \left[ \int\limits_{0}^{x}\ cos^{-1}(t)dt \right]\implies cos^{-1}(x) \\\\\\ f'(0.3)\iff cos^{-1}(0.3)\approx 1.26610367277949911126](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%202nd%20fundamental%20theorem%20of%20calculus%7D%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%5Cdisplaystyle%20%5Cleft%5B%20%5Cint%5Climits_%7B0%7D%5E%7Bx%7D%5C%20cos%5E%7B-1%7D%28t%29dt%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%28x%29%0A%5C%5C%5C%5C%5C%5C%0Af%27%280.3%29%5Ciff%20cos%5E%7B-1%7D%280.3%29%5Capprox%201.26610367277949911126)
now.. 0.3 is just a value...we'e assuming Radians for the inverse cosine, so, if you check, make sure your calculator is in Radian mode
The question in Englih is
<span>From a cardboard sheet 35 cm long and 20 cm wide, Masha cut out four squares of 1 dm2 each. Find the area of the cardboard residue. Answer the question in dm2
</span>
Step 1
<span>convert cm to dm
</span>we know that
1 cm is---------------> 0.10 dm
then
35 cm--------------> 3.5 dm
20 cm--------------> 2 dm
Step 2
find the area of the cardboard
Area=3.5*2=7 dm²
Step 3
find the area of the cardboard residue
Area=7-4*1=3 dm²
the answer is 3 dm²
<span>the answer in Russian
</span>
Шаг 1
преобразовать cm в дм
мы знаем это
1 cm ---------------> 0.10 дм
тогда
35 cm--------------> 3.5 дм
20 cm--------------> 2 дм
Шаг 2
найти область картона
Площадь=3.5*2=7 дм²
Шаг 3
<span>найти область остатка картона
</span>Площадь=7-4*1=3 дм²
ответ 3 дм²
ответ 3 дм²
After you type in your equations and hit graph you notice that, if you are in the standard window, your parabola is cut off so you have to choose your "window" button to change the viewing window to see the whole graph. Then you would use your 2nd button and "trace" and "intersect" to find the points of intersection of the 2 graphs. The first point is at (-.90901, 16.81812) and the second point is at (5.9090909, 3.1818182). Graphing calculators are quite amazing!
Answer:
4000 nm
Step-by-step explanation:
Conversion from meters to nanometers: 1 meter is 1(10⁹) nm
Step 1: Convert 0.000004 to scientific notation
0.000004 = 4(10⁻⁶)
Step 2: Convert by multiplication
4(10⁻⁶) x 1(10⁹) = 4000 nm
Area of a triangle is given by 1/2bh where b is the base and h is the perpendicular height of the triangle.
The area is 80x∧5y³ and the height is x∧4y
Thus; 80x∧5y³ = 1/2(x∧4y) b
160x∧5y³ = (x∧4y)b
b = (160x∧5y³)/ x∧4y)
b = 160xy²
Therefore, the base of the triangle is 160xy²