Answer:
(A)Cost of Rental A, C= 15h
Cost of Rental B, C=5h+50
Cost of Rental C, C=9h+20
(B)
i. Rental C
ii. Rental A
iii. Rental B
Step-by-step explanation:
Let h be the number of hours for which the barbeque will be rented.
Rental A: $15/h
Rental B: $5/h + 50
- Cost of Rental B, C=5h+50
Rental C: $9/h + 20
- Cost of Rental C, C=9h+20
The graph of the three models is attached below
(b)11.05-4.30
When you keep the barbecue from 11.05 to 4.30 when the football match ends.
Number of Hours = 4.30 -11.05 =4 hours 25 Minutes = 4.42 Hours
-
Cost of Rental A, C= 15h=15(4.42)=$66.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$72.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$59.78
Rental C should be chosen as it offers the lowest cost.
(c)11.05-12.30
Number of Hours = 12.30 -11.05 =1 hour 25 Minutes = 1.42 Hours
- Cost of Rental A, C= 15h=15(1.42)=$21.30
- Cost of Rental B, C=5h+50 =5(4.42)+50=$57.10
- Cost of Rental C, C=9h+20=9(4.42)+20=$32.78
Rental A should be chosen as it offers the lowest cost.
(d)If the barbecue is returned the next day, say after 24 hours
- Cost of Rental A, C= 15h=15(24)=$360
- Cost of Rental B, C=5h+50 =5(24)+50=$170
- Cost of Rental C, C=9h+20=9(24)+20=$236
Rental B should be chosen as it offers the lowest cost.
7 + 2x - 6 = -3x - 3 - 4
2x + 1 = -3x - 3 - 4
2x + 1 = -3x - 7
2x + 1 + 3x = -7
5x + 1 = -7
5x = -7 - 1
5x = -8
x = -8/5.
To be honest, I'm not sure which four steps your teacher is referring to. However, I'll show you one way to graph this.
A graph is simply a collection of points. Often those points are connected in some way (though they don't necessarily have to be) to form a curve.
Each point is of the form (x,y). To get each point, we pick random x values and determine their paired y value counterpart.
For example, if we pick x = -3, then,
y= -x^2 -4x -3
y= -(-3)^2 -4(-3) -3
y = -9 - 4(-3) - 3
y = -9 + 12 - 3
y = 0
This indicates that (-3, 0) is one point on the curve.
Let's repeat for x = -2
y= -x^2 -4x -3
y= -(-2)^2 -4(-2) -3
y = -4 - 4(-2) - 3
y = -4 + 8 - 3
y = 1
So (-2, 1) is another point on the curve.
Repeat this process as many times as you want. You should do at least 3 or 4 points in my opinion. The more points you generate, the more accurate the curve. After generating the points, you'll plot them all on the same xy grid. Then finally draw a curve through all of the points as shown below.
I used GeoGebra to make the graph.
Answer:
The second line (the flat one with an angle)
Step-by-step explanation:
Functions are linear when put on a graph.
Answer:
The answer is x= -1.9.
Use the 3 to multiply the number and the letter in the bracket... which is...
3x-24=-29.7.
3x=-29.7+24.
3x=-5.7.
x=-5.7/3.
x=-1.9.