Answer is b. Hope it help
Answer:
Part C: P2 = 0.30 atm
Part D: V1 = 16.22 L.
Explanation:
Part C:
Initial pressure (P1) = 2.67 atm
Initial volume (V1) = 5.54 mL
Final pressure (P2) =.?
Final volume (V2) = 49 mL
The final pressure (P2) can be obtained as follow:
P1V1 = P2V2
2.67 x 5.54 = P2 x 49
Divide both side by 49
P2 = (2.67 x 5.54)/49
P2 = 0.30 atm
Therefore, the final pressure (P2) is 0.30 atm
Part D:
Initial pressure (P1) = 348 Torr
Initial volume (V1) =?
Final pressure (P2) = 684 Torr
Final volume (V2) = 8.25 L
The initial volume (V1) can be obtained as follow:
P1V1 = P2V2
348 x V1 = 684 x 8.25
Divide both side by 348
V1 = (684 x 8.25)/348
V1 = 16.22 L
Therefore, the initial volume (V1) is 16.22 L
Answer:
4 × 10 g
Explanation:
Step 1: Write the balanced equation
2 H₂(g) + O₂(g) ⇒ 2 H₂O(I)
Step 2: Calculate the moles corresponding to 4 g of H₂
The molar mass of H₂ is 2.02 g/mol.
4 g × 1 mol/2.02 g = 2 mol
Step 3: Calculate the moles of H₂O produced from 2 moles of H₂
The molar ratio of H₂ to H₂O is 2:2. The moles of H₂O produced are 2/2 × 2 mol = 2 mol.
Step 4: Calculate the mass corresponding to 2 moles of H₂O
The molar mass of H₂O is 18.02 g/mol.
2 mol × 18.02 g/mol = 4 × 10 g
It has to be understood that 2 moles of oxygen are there in each mole of PbO2. Then it has to be calculated for 2 moles of oxygen.
Amount of oxygen = 2 * 5.43 moles
= 10.86 moles
Now it is also a fact that each mole of H2O contains 1 mole of oxygen. Then it can be easily concluded that 10.86 moles of water will be produced. I hope the procedure is clear enough for you to understand.
Answer: Ions may be defined as the element that contains either positive or negative charge over them. Two types of ions are cations and anions. The outermost electrons are involved in the formation of ions.
The atomic number of sulfur is 16. Its outermost electronic configuration is K=2, L= 8, M= 6. The sulfur requres two more electrons to complete its orbit and accquire -2 charge.
Explanation: