Answer:
1 m/s²
Explanation:
From the question,
Using
a = (v-u)/t.................... Equation 1
Where a = accelartion of the bicycle, v = Final velocity, u = initial velocity, t = time.
Given: v = 15 m/s, u = 5 m/s, t = 10 s
Substitute these values into equation 1
a = (15-5)/10
a = 10/10
a = 1 m/s²
Hence the acceleration of the bicycle is 1 m/s²
Answer:
which agrees with the third answer in your list of answer options
Explanation:
Start with:

divide both sides by b to isolate c on the right:

Answer:
80 ft/s
Explanation:
Given:
Δy = 100 ft
v₀ = 0 ft/s
a = 32.2 ft/s²
Find: v
v² = v₀² + 2aΔx
v² = (0 ft/s)² + 2 (32.2 ft/s²) (100 ft)
v = 80.2 ft/s
Rounded, the speed when it reaches the ground is 80 ft/s.
Picking up a sheet of paper . . . work done with small force
Picking up a glass of water . . . work done with moderate force
Picking up a huge boulder . . . work done with a great tremendous force
=================================
Standing still . . .
Holding your tongue out as far as it will go . . .
Holding your arm over your head for 3 days . . .
Holding a huge boulder motionless over your head . . .
Pushing on a brick wall . . .
Pushing as hard as you can against a truck with the wheels locked . . .
. . . . . No work done at all, because the force doesn't move through a distance.
<u>Work done = (force) times (distance)</u>
If the force doesn't move, then the distance is zero, and the work done is zero.