Newton's new “reflecting telescope” was more powerful than ... Before Newton, scientists primarily adhered to ancient theories on ... laws of motion laid the groundwork for classical mechanics. Newton's research on motion helped give credibility to the heliocentric view. Newton also helped pioneer telescopic innovations, and he is sometimes credited with inventing the first reflecting telescope. He also conducted experiments using the prism, and developed a theory about the nature of color and light.
The most massivest stars end their lives as black holes. <em>(D)</em>
Infrared is created by detecting the produced radiation coming off of clouds. The temperature of the cloud will define the wavelength of radiation produced from the cloud. The benefit of the infrared imagery is that can be used day and night to conclude the temperature of the cloud tops and earth surface structures and to get the general idea of how clouds are. Based on the general guidelines to define cloud features, if the cloud is bright white on infrared then it is a high cloud or has a cloud top that is developed high into the troposphere. In this way infrared images actually display patterns of temperature on a gray scale such that at one extreme dark gray is warm and at the other extreme bright white is cold. A color scale is used to portray temperature and some improved infrared images show two or more gray scale sequences. High cold clouds are brighter white than low warm clouds.
<em><u>The</u></em><em><u> </u></em><em><u>atomic</u></em><em><u> </u></em><em><u>nucleus</u></em><em><u> </u></em><em><u>consists</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>protons</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u>.</u></em>
<em><u>Additional</u></em><em><u> </u></em><em><u>information</u></em><em><u>:</u></em>
<em><u>Protons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>positive</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particl</u></em><em><u>e</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>are</u></em><em><u> </u></em><em><u>negative</u></em><em><u>ly</u></em><em><u> </u></em><em><u>charged</u></em><em><u> </u></em><em><u>particle</u></em><em><u>.</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>:</u></em><em><u>)</u></em>
Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m