1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
5

.. Which of the following are the coordinates of the vertices of the following square with sides of length a?

Mathematics
1 answer:
atroni [7]3 years ago
8 0

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

You might be interested in
How many times greater is 6.6 * 10^10 than 3 * 10^7
sweet-ann [11.9K]
Ten times greater than 6.6*10^10 and 3*10^7
5 0
4 years ago
Write an equation in slope-intercept form for the line that has a slope of -4/5 and passes through (0, 7).
patriot [66]

Answer:

A. y = -\frac{4}{5}x + 7

Step-by-step explanation:

Slope intercept form is y = mx + b where m is the slope and b is the y-intercept

<em>It gives us the slope, so we can plug that in:</em> y = -\frac{4}{5}x + b

<em>Next, it gives us a point, so we can plug in the x and y into our equation and solve for b when (x, y)</em>

y = -\frac{4}{5}x + b

7 =  -\frac{4}{5}(0) + b

7 = b

<em>Last, complete our equation:</em>

y = -\frac{4}{5}x + b

y = -\frac{4}{5}x + 7

4 0
3 years ago
The table shows the height of several buildings in Chicago. Use the table to determine whether the height of the building is a l
guajiro [1.7K]

Answer:

no (mark brainlest plz)

Step-by-step explanation:

because North tower dips down when its the highest. Its also not linear because it +5 then +30 all the sudden

8 0
3 years ago
What’s the answer to 3\4(8x + 12) = 3
Artemon [7]

Answer:

x = - 1

Step-by-step explanation:

\frac{3}{4} (8x + 12) = 3 ( multiply both sides by 4 to clear the fraction )

3(8x + 12) = 12 ( divide both sides by 3 )

8x + 12 = 4 ( subtract 12 from both sides )

8x = - 8 ( divide both sides by 8 )

x = - 1

4 0
2 years ago
Read 2 more answers
Solve for Z. 42=-7(z-3)
elixir [45]

42/7=Z-3

6=Z-3

Z=6+3

Z=9

3 0
3 years ago
Read 2 more answers
Other questions:
  • HELP AND I WILL GIVE 20 POINTS
    6·2 answers
  • Answer The question... What is the slope of the line passing through the points (2,-5 ) and 4,1)?
    9·1 answer
  • Please help with POWER FUNCTIONS!!!!!
    8·1 answer
  • 1/4×[(-6.8)+(10.4)]+54.3
    13·2 answers
  • "1. Find the area of the regular polygon. Give the answer to the nearest tenth.
    5·1 answer
  • Write this number in standard form.
    11·1 answer
  • Cos() =<br> O A. V<br> B.<br> 173<br> 2<br> OC.<br> OD.<br> -3
    10·1 answer
  • What is the equation of the line
    15·2 answers
  • How many songs are on one's playlist?<br><br> please help asap I think 100
    12·2 answers
  • Which expressionis equal to9(9MPLUS3t)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!