Answer:
Area pf the regular pentagon is 193
to the nearest whole number
Step-by-step explanation:
In this question, we are tasked with calculating the area of a regular pentagon, given the apothem and the perimeter
Mathematically, the area of a regular pentagon given the apothem and the perimeter can be calculated using the formula below;
Area of regular pentagon = 1/2 × apothem × perimeter
From the question, we can identify that the value of the apothem is 7.3 inches, while the value of the perimeter is 53 inches
We plug these values into the equation above to get;
Area = 1/2 × 7.3× 53 = 386.9/2 = 193.45 which is 193
to the nearest whole number
Using the t-distribution, it is found that the p-value of the test is 0.007.
At the null hypothesis, it is <u>tested if the mean lifetime is not greater than 220,000 miles</u>, that is:

At the alternative hypothesis, it is <u>tested if the mean lifetime is greater than 220,000 miles</u>, that is:
.
We have the <u>standard deviation for the sample</u>, thus, the t-distribution is used. The test statistic is given by:
The parameters are:
is the sample mean.
is the value tested at the null hypothesis.
- s is the standard deviation of the sample.
- n is the sample size.
For this problem:

Then, the value of the test statistic is:



We have a right-tailed test(test if the mean is greater than a value), with <u>t = 2.69</u> and 23 - 1 = <u>22 df.</u>
Using a t-distribution calculator, the p-value of the test is of 0.007.
A similar problem is given at brainly.com/question/13873630
Answer:
Step-by-step explanation:
7-2+(4•7)
5+28
=33
Answer:
x = 11
Step-by-step explanation:
(0.3x - 2.1)/3 = 0.4
0.3x - 2.1 = 0.4 * 3
0.3x - 2.1 = 1.2
0.3x = 1.2 + 2.1
0.3x = 3.3
x = 3.3/0.3
x = 11