<u>Answer:</u> The for the reaction is -1052.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:
The intermediate balanced chemical reaction are:
(1)
(2)
The expression for enthalpy of the reaction follows:
Putting values in above equation, we get:
Hence, the for the reaction is -1052.8 kJ.
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility
Answer:
shorter wavelength = alpha wave
Explanation:
Given that,
The alpha wave has a frequency of 5 Hz and the beta wave has a frequency of 2 Hz.
We need to compare the wavelengths of these two waves.
For alpha wave,
For beta wave,
From the above calculations, we find that the wavelength of the alpha wave is shorter than the wavelength of the beta wave.
Write an balance the equation
Na2O + H2O -> 2 NaOH
Calculate the molecular mass of Na2O and NaOH from the atomic mass from the periodic table.
Na = 23
O=16
H=1
Na2O = 23 * 2 + 16 = 62
NaOH = 23+16+1= 40
For the stoichiometry of the reaction one mole of Na2O = 62g produce two mol of NaOH = 2* 40= 80 g
120 g Na2O x 80g NaOH / 62g Na2O=
154.8 g NaOH
Answer:
NH₄⁺
H₂PO₄⁻
H₃O⁺
Explanation:
- An ion is an atom or molecule with a net electric charge due to the loss or gain of one or more electrons.
- Ion may be positively charged "cation" or negatively charged "anion".
- Neutral molecule has a net charge of zero.
<em>So, the species that are ions are: </em>
NH₄⁺
H₂PO₄⁻
H₃O⁺