Answer:
d = 68.18 m
Explanation:
Given that,
Initial velocity, u = 15 m/s
Finally it comes to stop, v = 0
Acceleration, a = -1.65 m/s²
Time, t = 2.5 s
We need to find the distance covered by the hayride before coming to a stop. Let d is the distance covered. Using third equation of motion to find it :

So, the hayride will cover a distance of 68.18 m.
Answer:

Explanation:
The angular momentum of the pulsar is given by:

where
is the mass of the pulsar
is the radius
is the angular speed
Given the period of the pulsar,
, the angular speed is given by

And so, the angular momentum is

To find out the kinetic friction, using the coefficient friction formula.
What is kinetic friction?
A force that acts between moving surfaces is called "kinetic friction." A force acting in opposition to the direction of a moving body on the surface is felt. The two materials' kinetic friction coefficients will determine how much force is applied.
What is coefficient friction?
A measure of the degree of friction between two surfaces is the coefficient of friction. A coefficient of friction is determined by calculating the resistance to motion at the intersection of two surfaces made of the same or different materials.
UK
U-coefficient of friction
K-Kinetic friction
Using UK
450+370-f=m*o
f=820=UK*260*9.8
UK=2.548
820/2.548
UK= 321.8210361
Therefore the coefficient of kinetic friction is 321.8210361
Learn more about Kinetic friction from the given link.
brainly.com/question/14111192
#SPJ4
I would say D) melting point.