Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
Answer:
0.15625 grams
Explanation:
Half life: It is related to the decay of radioactive material. The duration in which half of the material will be degraded/decayed. That means after half life 50% of the radioactive material will be left. Here the half life is 28 years.
Initial quantity of the sample: 2.5 grams.
After 28 years, the leftover quantity = 1.25 grams
After 56 years, the leftover quantity = 0.625 grams
After 84 Years, the leftover quantity = 0.3125 grams
After 112 years, the leftover quantity = 0.15625 grams
Answer:
yes
Explanation:
using law of HC(heat capacity), which is
- heat loss=heat gain
- energy H=MCQ
Where M is mass of substance,C is specific heat capacity, and Q is temperature change
In case of two substance
- the H = Mc*Cc*Q+Mw*Cw*Q(provided the initial and final temperature are given)
Answer:
The magnitude of angular acceleration is
.
Explanation:
Given that,
Initial angular velocity, 
When it switched off, it comes o rest, 
Number of revolution, 
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is
. Hence, this is the required solution.
Answer:
Li has less mass and therefore less inertia, so he can change his motion more easily than Raj.
Explanation:
Inertia describes the resistance of an object to any change in its state of motion, and it depends on the mass of the object only. In particular:
- if an object has a large inertia (large mass), then it is more difficult to change its state of motion (i.e. to put it in motion, or to slow it down, or to change its direction of motion)
- if an object has small inertia (small mass), then it is more easy to change its state of motion
In this problem, Li has less mass than Raj, so he has less inertia, therefore he can change his motion more easily than Raj.