1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4
 
        
             
        
        
        
Break the circuit and apace a meter actually within the circuit.
        
             
        
        
        
Answer:
to check for errors.
Explanation:
since some of the components of the scale are metallic, they are prone to rusting which would cause error in reading of the scale so there is organized checking if the scale to correct that.
hope it helps .
 
        
                    
             
        
        
        
Answer:
The heat is 115478.4 J.
Explanation:
Given that,
Mass of water = 0.400 kg
Power = 200 W
Suppose, we determine how much heat must be added to the water to raise its temperature from 20.0°C to 89.0°C?
We need to calculate the heat
Using formula of heat

Where, m = mass of water
c = specific heat
Put the value into the formula


Hence, The heat is 115478.4 J.