For balancing the lever, force on both the sides shall be equal. so,
Force on 3 m end = m × a = 3 × 98.1 = 294.3
Now, on 6 m end, it would be: = 294.3/6 = 49.05
After rounding-off to the nearest hundredth value, it would be: 49 N
Finally, Option A would be your correct answer.
Hope this helps!
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Answer:
a)188.65m
b)154.35m
c)243.7m
Explanation:
Given data:


(a) The distance from the kicker to each of the 2 spectators is given by:

where,
v= speed of sound
=time taken for the sound waves to reach the ears
m
(b)
where,
v= speed of sound
=time taken for the sound waves to reach the ears

(c)As the angle b/w slight lines from the two spectators to the player is right angle,
hypotenuse=the distance b/w 2 spectators
and, the slight lines are the other 2 lines

Answer:
They move farther apart
Explanation:
When objects heat up they expand for example heating up a balloon makes it expand
Answer:
get it done for free on www.brainly.com
Explanation: